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Molybdenum is a body centered-cubic metal with a va-
riety of high technology applications due to it’s thermal,
mechanical, and chemical stability. In high pressure re-
search, it is used as a calibration standard in diamond
anvil cell (DAC) measurements. Many theoretical and
experimental studies have been performed to study the
Mo equation of state (EOS) to high pressure.1–3

The LANL SESAME database includes tabulated
equations of state for many materials from ambient con-
ditions to high pressure and temperature.4 The last up-
date to the Mo SESAME table was in 1998 and was
numbered 2984. Since then, new shock, compression,
and melt line data has become available.5–7 Furthermore,
density functional theory (DFT) models have been im-
proved and their application to high pressure and tem-
perature EOS simulations has evolved in recent years.8–11

In this report, we detail a new Mo SESAME table num-
bered 2985. It includes new cold curve DFT calculations
a better tuned melt line. This allows us to better match
shock Hugoniot data.

SESAME 2984 was prepared with the GRIZZLY code,
the predecessor to openSESAME. OpenSESAME in-
cludes better interpolation schemes and the ability to
include a Maxwell construction table to correct for the in-
herent van der Waals loop.12 The cold curve in SESAME
2984 was determined directly from matching a selection
of shock data, but does not agree with experiments in the
ultra-high pressure regime.5 For these reasons, we have
developed SESAME 2985, which comprises our best de-
scription of the Mo EOS using all available experimental
data.

The SESAME equation of state is defined by three
additive contributions

U(ρ, P, T ) = UT=0(ρ, P ) + Uion(ρ, P, T ) + Uelec(ρ, P, T )
(1)

where UT=0 is the cold curve, Uion is the ionic compo-
nent, and Uelec is the electronic component. Uelec uses
the Thomas-Fermi-Dirac method to describe electronic
excitation.4

For UT=0 we have chosen a Burch-Murnaghan EOS
(taking terms up to 7th order). This is fit to DAC mea-
surements and DFT calculation (Fig. 1). For DFT, the

a)Electronic mail: jbjorgaard@lanl.gov
b)Electronic mail: jw@lanl.gov
c)Electronic mail: crockett@lanl.gov
d)Electronic mail: danielsheppard@lanl.gov

10 15 20

Density (g/cm3)

0

200

400

600

800

1000

P
re
ss
u
re
 (
G
P
a
)

2985

DFT

DAC

20 40 60 80 100
103

104

105

FIG. 1. Cold curve (0K isotherm) for SESAME 2985 de-
rived from full potential DFT simulations of bcc-Mo (AM05
functional, linearized-muffin tin orbital method) and extrapo-
lation of room temperature diamond anvil cell measurements
to 0K via Ref. 6.

linearized-muffin tin orbital method13 with the AM05
functional14 was used to determine the cold curves of
bcc, fcc, and hcp Mo to ultra-high pressure. The differ-
ent phases had a small energy difference at high pressure,
on the same scale as the error in the Burch-Murnaghan
EOS fit. For simplicity, we have decided to include only
the bcc phase in the EOS table. Other full-potential cal-
culations of Mo predict a phase transformation to fcc at
around 660 GPa,9 but we expect this to have little effect
on the final SESAME table. Surveying the available lit-
erature, mixed phases may occur at high pressure.7 The
DFT cold curve is shifted to lower pressure by 15 GPa in
order to match the experimental DAC data. The DAC
data, measured at room temperature by Dewaele et al.15,
is extrapolated to 0K in Ref. 6. The 0K density of 10.335
g/cm3 and bulk modulus of 266 GPa are used as the basis
for the Burch-Murnaghan EOS fit.

A Lindemann melt model is used to determine the
temperature of transition to liquid EOS. We have taken
the assessment of available experimental and theoretical
studies given by Wang et al. in Ref. 16 to determine
the best estimated range for the Mo melt line. SESAME
2985 gives a better agreement with the available data
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FIG. 2. Melt line interpolated from SESAME 2985 and
SESAME 2984 compared with the range of values given in
Ref. 16.

than SESAME 2984, as shown in Fig. 2. The range of
melt data at high pressure for Mo is a debated topic and
large differences between shock and DAC melting have
been observed.10,11,16–20 Recent experiments have sug-
gested that low temperature melting observed in DAC
measurements is due to microstructural transformation.7

With a wide range of possible melt temperatures at high
pressure, we’ve chosen to match the range near it’s mean.

Quantum molecular dynamics (QMD)21 were per-
formed with the VASP package22–24 to assess the liq-
uid EOS of SESAME 2985. A cell of 256 randomly dis-
tributed Mo atoms was prepared. Molecular dynamics in
the isokinetic ensemble were performed to 20 ps with a
time step of 1 fs. Equilibration was determined by ob-
serving that the moving average of the internal energy
became stable. The average pressure after equilibration
was shifted down by 15 GPa to account for error in the
DFT exchange-correlation functional. The result is plot-
ted in Figure 3 for a range of densities and tempera-
tures. Liquid QMD agrees well with the isotherms from
SESAME 2985 in the liquid region of the table. When
the melt line crosses the 3000K and 4000K isotherms, the
liquid QMD results deviate from the table. The 10000K
isotherm also deviates from the table at high pressure,
but does not cross the melt line. This may be an effect
related to the frozen core approximation used with the
pseudopotential in VASP.

The Uion(ρ, P, T ) is defined by the ’JDJNuc’ model,
which smoothly interpolates between gas, solid, and
liquid.8,12 In reference to experimentally determined pa-
rameters, we set the Grunweisen parameter to be 1.75
from Ref. 2 and Debye temperature to be 474K.25 Un-
like SESAME 2984, the SESAME 2985 table has been
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FIG. 3. Liquid isotherms from QMD calculations (x) com-
pared with isotherms from SESAME 2985 (lines) and the melt
line from SESAME 2985 (dashed line).

designed to accurately interpolate the low temperature
and pressure regime by spacing the temperature grid over
50K increments from 0K to 800K. The comparison to ex-
perimental data is shown in Fig. 3. The heat capacity
and thermal expansion data match SESAME 2985 well,
but begin to diverge near 1500K. The deviation between
the EOS and experiments above this temperature could
be due to microstructural effects in the Mo samples. At
low temperature, SESAME 2985 provides better interpo-
lation than SESAME 2984, which is not able to capture
the low temperature isobaric properties.

Our final assessment of SESAME 2985 is of the avail-
able Hugoniot data. The Rankine-Hugoniot jump condi-
tions describe the states on either side of a shock wave
by

U − U0 =
1

2
(P + P0)(V̄ − V̄0) (2)

where U is the internal energy, P is the pressure, and the
specific volume is the reciprocal of the density V̄ = 1/ρ.
The given initial conditions combined with the equation
of state give the possible final shock states of the mate-
rial. To interrogate the EOS and determine these states
requires solving Eq. 2 by interpolating the EOS table to
determine U(P, ρ). This can be done by providing either
initial ρ or P points. Many shock wave experiments have
been performed on Mo, including measurements of the
principle, porous, and heated Hugoniots. We have com-
pared SESAME 2984 and 2985 with all available Hugo-
niot data in Fig. 5.

The Hugoniot curve is strongly affected by the choice of
cold curve. The cold curve of SESAME 2985, generated
using full potential DFT calculations at high pressure,
produces a Hugoniot which is closer to ultra-high pres-
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sure shock data than the cold curve used in SESAME
2984. This is likely due to the cold curve of SESAME
2984 being fit to low pressure Hugoniot data. The uncer-
tainty in the Hugoniot points generated in nuclear tests
(all points above 900 GPa) is large, on the order of 1 TPa
and 5 g/cm3. Both SESAME 2984 and SESAME 2985
are within the error bounds of these ultra-high pressure
experiments, but it is worth noting that the principle
Hugoniot of SESAME 2984 runs below all points above
900 GPa. Heated Hugoniot experiments are available
which have an initial temperature of 1673K. As pressure
is increased, the experimental data is in better agreement
with SESAME 2985 than with SESAME 2984.

Under expansion, the cold curve is matched to a
Leonard-Jones type potential where the energy, pressure,
and pressure derivative are fit to the Burch-Murnaghan
cold curve at a compression of 0.99 and cohesive energy
of 176.5 kcal/mol. The accuracy of SESAME 2985 in this
regime is determined by comparing it to available porous
Hugoniot data as shown in Fig. 6. and to the range
of experimental values given in Ref. 26 for the critical
temperature and critical pressure. SESAME 2985 has
a critical point at 1.1 g/cm3, 0.23 GPa, and 10600K,
which is within the range of experimental values. The
critical isotherm has been added to the grid of SESAME
2985 so that interpolation is not necessary at the critical
point. The calculated porous Hugoniot poorly matches
the experimental data except at low porosity. Due to
well known difficulties in the measurement technique and
possibility that the EOS model is inaccurate in the low
density regime, the discrepancy is acceptable. Further
work on adequately representing the low density regime
may be carried out in the future.

In summary, SESAME 2985 has several advantages
over SESAME 2984. It better matches the ultra-high
pressure regime and heated Hugoniot data. It predicts
more accurate isobaric properties by better tuning of the
model and a finer grid in the low temperature regime. It
also provides a better estimate of the high pressure melt
line based on up-to-date experimental information. Both
SESAME 2984 and SESAME 2985 fail to match mea-
surements of isobaric properties as the melting temper-
ature is approached and both disagree with low density
Hugoniot data. Nonetheless, SESAME 2985 is an im-
portant update to the SESAME library and significantly
improves on SESAME 2984.

1G. H. Miller, T. J. Ahrens, and E. M. Stolper, “The equation of
state of molybdenum at 1400 C,” J. Appl. Phys. 63, 4469 (1988).

2Y. Zhao, A. C. Lawson, J. Zhang, B. I. Bennett, and R. B.
Von Dreele, “Thermoelastic squation of state of molybdenum,”
Phys. Rev. B 62, 8766 (2000).

3T. S. Duffy, G. Shen, J. Shu, H.-K. Mao, R. J. Hemley, and
A. K. Singh, “Elasticity, shear strength, and equation of state
of molybdenum and gold from x-ray diffraction under nonhydro-
static compression to 24 GPa,” J. Appl. Phys. 86, 6729 (1999).

4S. P. Lyon and J. D. Johnson, “SESAME: The Los Alamos
National Laboratory equation of state database,” Tech. Rep.
(LANL, 1992) LA-UR-92-3407.

5R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V.
Simakov, “Experimental data on shock compression and adia-

batic expansion of condensed matter,” RFNC-VNIIEF, Sarov
446 (2001).
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FIG. 5. a.) Principle Hugoniot in the ultra-high pressure regime plotted with cold curve and melt line from SESAME 2985. b.)
Principle Hugoniot up to 600 GPa plotted with the melt line from SESAME 2985. c.) Heated Hugoniot with initial temperature
of 1673K plotted with the melt line from SESAME 2985. d.) Shock and particle velocities for principle and heated Hugoniot.
Experimental data is from Refs. 5, 69, and 70
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FIG. 6. Porous hugoniot data5 compared with SESAME 2984 (dotted lines) and 2985 (solid lines).


